3D Bioplotter Research Papers

Displaying all papers by R. Mülhaupt (23 results)

Cryo‐3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration

Macromolecular Materials and Engineering 2021 Volume 306, Issue 1, Article 2000541

High molecular weight polyhydroxymethylene (PHM) has a repeat unit identical to that of low molecular weight sugar alcohols and exhibits carbohydrate‐like properties. Herein, cryogenic extrusion‐based 3D printing is combined with a phase separation in water to fabricate hierarchically porous PHM scaffolds containing interconnected macro‐, micro‐, and nanopores. As PHM is infusible and insoluble in common solvents, its precursor polyvinylene carbonate (PVCA) dissolved in dimethylsulfoxide (DMSO) is used to 3D print hierarchically porous PVCA scaffolds that are converted into PHM by hydrolysis without impairing the pore architectures. Similar to low‐temperature deposition manufacturing, the PVCA/DMSO freezes on a build platform at −78…

Polyhydroxymethylenes as Multifunctional High Molecular Weight Sugar Alcohols Tailored for 3D Printing and Medical Applications

Macromolecular Chemistry and Physics 2020 Volume 221, Issue 15, Article 2000132

Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]n H2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA…

Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose

Macromolecular Materials and Engineering 2020 Volume 305, Issue 4, Article 1900740

Combining recycling of paper wastes (WPs) with extrusion‐based additive manufacturing represents a sustainable route to cellular cellulose composites tailored for lightweight construction. Particularly, shear mixing of shredded WPs with an aqueous solution of a polymer binder like polyvinyl alcohol (PVA) yields aqueous pastes suitable for 3D printing. As a shear thinning additive, both WP and microfibrillated cellulose account for enhanced shear thinning and dimensional stability. Opposite to the formation of dense WP/PVA composites by melt extrusion, 3D printing of aqueous pastes produces cellular cellulose/PVA composites exhibiting hierarchical pore architectures. In spite of low densities around 0.8 g cm−3, high Young’s…

3D Micro‐Extrusion of Graphene‐based Active Electrodes: Towards High‐Rate AC Line Filtering Performance Electrochemical Capacitors

Advanced Functional Materials 2014 Volume 24, Issue 29, Pages 4706–4716

A facile one-step printing process by 3D micro-extrusion affording binder-free thermally reduced graphene oxide (TRGO) based electrochemical capacitors (ECs) that display high-rate performance is presented. Key intermediates are binder-free TRGO dispersion printing inks with concentrations up to 15 g L−1. This versatile printing technique enables easy fabrication of EC electrodes, useful in both aqueous and non-aqueous electrolyte systems. The as-prepared TRGO material with high specific surface area (SSA) of 593 m2 g−1 and good electrical conductivity of ≈16 S cm−1 exhibits impressive charge storage performances. At 100 and 120 Hz, ECs fabricated with TRGO show time constants of 2.5 ms…

Layered Gradient Nonwovens of In Situ Crosslinked Electrospun Collagenous Nanofibers Used as Modular Scaffold Systems for Soft Tissue Regeneration

Advanced Functional Materials 2013 Volume 23, Issue 26, Pages 3277-3285

In a versatile modular scaffold system, gradient nonwovens of in situ crosslinked gelatin nanofibers (CGN), fabricated by reactive electrospinning, are laminated with perforated layers and nonwovens of thermoplastic non-crosslinked biodegradable polyesters. The addition of glyoxal to a gelatin solution in a non-toxic solvent mixture consisting of acetic acid, ethyl acetate, and water (5:3:2 w/w/w) enables the in situ crosslinking of gelatin nanofibers during electrospinning. The use of this fluorine-free crosslinking system eliminates the need of post-treatment crosslinking and purification steps typical for conventional CGN scaffolds. The slowly progressing crosslinking of the dissolved gelatin in the presence of glyoxal increases the…

Emulsifier-Free Graphene Dispersions with High Graphene Content for Printed Electronics and Freestanding Graphene Films

Advanced Functional Materials 2012 Volume 22, Issue 6, Pages 1136-1144

A novel and highly versatile synthetic route for the production of functionalized graphene dispersions in water, acetone, and isopropanol (IPA), which exhibit long-term stability and are easy to scale up, is reported. Both graphene functionalization (wherein the oxygen content can be varied from 4 to 16 wt%) and dispersion are achieved by the thermal reduction of graphite oxide, followed by a high-pressure homogenization (HPH) process. For the first time, binders, dispersing agents, and reducing agents are not required to produce either dilute or highly concentrated dispersions of single graphene sheets with a graphene content of up to 15 g L−1.…

Valproate release from polycaprolactone implants prepared by 3D-bioplotting

Die Pharmazie - An International Journal of Pharmaceutical Sciences 2011 Volume 66, Number 7, Pages 511-516

In this study we examined the release kinetics of valproate from polycaprolactone (PCL) implants constructed for local antiepileptic therapy. The PCL implants were produced with a novel 3D-Bioplotting technology. Release kinetics were determined by superfusion of these implants. Valproate was measured in the superfusate fractions with high pressure liquid chromatography (HPLC). The HPLC measurements were linear over a concentration range of 10-500 g/mL for valproate and the limit of quantification was found to be 9 g/mL. The HPLC method used is simple, accurate and sensitive. Within the first day, valproate (10%w/w)-PCL implants released already 77% of the maximum possible liberated…

Calvaria bone chamber-A new model for intravital assessment of osseous angiogenesis

Journal of Biomedical Materials Research Part A 2011 Volume 99A, Issue 2, pages 151-157

The faith of tissue engineered bone replacing constructs depends on their early supply with oxygen and nutrients, and thus on a rapid vascularization. Although some models for direct observation of angiogenesis are described, none of them allows the observation of new vessel formation in desmal bone. Therefore, we developed a new chamber model suitable for quantitative in vivo assessment of the vascularization of bone substitutes by intravital fluorescence microscopy. In the parietal calvaria of 32 balb/c mice a critical size defect was set. Porous 3D-poly(L-lactide-co-glycolide) (PLGA)-blocks were inserted into 16 osseous defects (groups 3 and 4) while other 16 osseous…

Accelerated Angiogenic Host Tissue Response to Poly(L-Lactide-co-Glycolide) Scaffolds by Vitalization with Osteoblast-like Cells

Tissue Engineering Part A 2010 Volume 16, Issue 7, Pages 2265-2279

Background: Bone substitutes should ideally promote rapid vascularization, which could be accelerated if these substitutes were vitalized by autologous cells. Although adequate engraftment of porous poly(L-lactide-co-glycolide) (PLGA) scaffolds has been demonstrated in the past, it has not yet been investigated how vascularization is influenced by vitalization or, more precisely, by seeding PLGA scaffolds with osteoblast-like cells (OLCs). For this reason, we conducted an in vivo study to assess host angiogenic and inflammatory responses after the implantation of PLGA scaffolds vitalized with isogeneic OLCs. Materials and Methods: OLCs were seeded on collagen-coated PLGA scaffolds that were implanted into dorsal skinfold chambers…

Effects of VEGF loading on scaffold-confined vascularization

Journal of Biomedical Materials Research Part A 2010 Volume 95A, Issue 3, Pages 783-792

Adequate vascularization of tissue-engineered constructs remains a major challenge in bone grafting. In view of this, we loaded ß-tricalcium-phosphate (ß-TCP) and porous poly(L-lactide-co-glycolide) (PLGA) scaffolds via collagen coating with vascular endothelial growth factor (VEGF) and studied whether the VEGF loading improves scaffold angiogenesis and vascularization. Dorsal skinfold chambers were implanted into 48 balb/c mice, which were assigned to 6 groups (n = 8 each). Uncoated (controls), collagen-coated, and additionally VEGF-loaded PLGA and ß-TCP scaffolds were inserted into the chambers. Angiogenesis, neovascularization, and leukocyte-endothelial cell interaction were analyzed repeatedly during a 14-day observation period using intravital fluorescence microscopy. Furthermore, VEGF release…

Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects

Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010 Volume 93B, Issue 2, Pages 520-530

The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from…

Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo

Microvascular Research 2009 Volume 78, Issue 2, Pages 180-190

Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However, after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency, we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis, microhemodynamics, leukocyte–endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (l-lactide-co-glycolide) (PLGA) scaffolds (group 4), additionally seeded with osteoblast-like cells (OLCs, group 1), bone marrow mesenchymal stem cells (bmMSCs, group 2) or a combination of OLCs…

Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds

Journal of Biomedical Materials Research Part A 2008 Volume 86A, Issue 4, Pages 1002-1011

Scaffolds for tissue engineering of bone should mimic bone matrix and promote vascular ingrowth. Whether synthetic hydroxyapatite and acellular dentin, both materials composed from calcium phosphate, fulfill these material properties has not been studied yet. Therefore, we herein studied in vivo the host angiogenic and inflammatory response to these biomaterials. Porous scaffolds of hydroxyapatite and isogeneic acellular dentin were implanted into the dorsal skinfold chamber of balb/c mice. Additional animals received perforated implants of isogeneic calvarial bone displaying pores similar in size and structure to those of both scaffolds. Chambers of animals without implants served as controls. Angiogenesis and neovascularization…

Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds

Journal of Biomedical Materials Research Part A 2008 Volume 85A, Issue 2, Pages 397-407

In tissue engineering, rapid ingrowth of blood vessels into scaffolds is a major prerequisite for the survival of three-dimensional tissue constructs. In the present study, we investigated whether the vascularization of implanted poly-D,L-lactic-co-glycolic acid (PLGA) scaffolds may be accelerated by incorporation of Matrigel. For this purpose, we investigated in the aortic ring assay the proangiogenic properties of growth factor reduced Matrigel (GFRM) and growth factor containing Matrigel (GFCM), which were then incorporated into the pores of PLGA scaffolds. Subsequently, we analyzed vascularization, biocompatibility, and incorporation of these scaffolds during 14 days after implantation into dorsal skinfold chambers of balb/c mice…

Improvement of Vascularization of PLGA Scaffolds by Inosculation of In Situ-Preformed Functional Blood Vessels With the Host Microvasculature

Annals of Surgery 2008 Volume 248 - Issue 6 - Pages 939-948

Objective: We analyzed, in vivo, whether the establishment of blood supply to implanted scaffolds can be accelerated by inosculation of an in situ-preformed microvascular network with the host microvasculature. Background: A rapid vascularization is crucial for the survival of scaffold-based transplanted tissue constructs. Methods: Poly-lactic-glycolic acid scaffolds were implanted into the flank of balb/c or green fluorescent protein (GFP)-transgenic mice for 20 days to create in situ a new microvascular network within the scaffolds. The prevascularized scaffolds were then transferred into the dorsal skinfold chamber of isogeneic recipient mice. Nonvascularized poly-lactic-glycolic acid scaffolds served as controls. Vascularization, blood perfusion, and…

Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials

Journal of Biomedical Materials Research Part A 2008 Volume 87A, Issue 4, pages 933-943

Rapid prototyping (RP)-produced scaffolds aregaining increasing importance in scaffold-guided tissueengineering. Microbial adhesion on the surface of replacement materials has a strong influence on healing and long-term outcome. Consequently, it is important to examine the adherence of microorganisms on RP-produced scaffolds. This research focussed on manufacturing of scaffolds by 3D-bioplotting and examination of their microbial adhesion characteristics. Tricalciumphosphate (TCP), calcium/sodium alginate, and poly(lactide-co-glycolic acid) (PLGA) constructs were produced and used to study the adhesion of dental pathogens. Six oral bacterial strains, one Candida strain and human saliva were used for the adhesion studies. The number of colony forming units (CFU) were…

Comparative in vitro study of the cell proliferation of ovine and human osteoblast‐like cells on conventionally and rapid protot yping produced scaffolds tailored for application as potential bone replacement material

Journal of Biomedical Materials Research Part A 2007 Volume 83A, Issue 4, pages 1154-1164

Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application…

Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice

Biomaterials 2006 Volume 27, Issue 29, Pages 5027-5038

For tissue engineering, scaffolds should be biocompatible and promote neovascularization. Because little is known on those specific properties, we herein studied in vivo the host angiogenic and inflammatory response after implantation of commonly used scaffold materials. Porous poly(l-lactide-co-glycolide) (PLGA) and collagen–chitosan–hydroxyapatite hydrogel scaffolds were implanted into dorsal skinfold chambers of balb/c mice. Additional animals received cortical bone as an isogeneic, biological implant, while chambers of animals without implants served as controls. Angiogenesis and neovascularization as well as leukocyte–endothelial cell interaction and microvascular permeability were analyzed over 14 day using intravital fluorescence microscopy. PLGA scaffolds showed a slight increase in leukocyte…

Fabrication of soft and hard biocompatible scaffolds using 3D-Bioplotting

Virtual Modelling and Rapid Manufacturing-Advanced Research in Virtual and Rapid Prototyping 2005 London, England: Taylor & Francis Group, 97-102

In Tissue Engineering and bone reconstruction, alongside the choice of materials, the scaffold design is of great importance. Three dimensional structures not only permit the tuning of chemical and mechanical properties, but they can also copy the outer form of the required bone or cartilaginous structures. While new processes that create such 3D scaffolds by means of Rapid Prototyping have been developed, they are still restricted to a limited type of materials. At the Freiburger Materialforschungszentrum, our group has developed a new process called 3D BioplottingTM. Most kinds of polymers and biopolymers can be used for the fabrication of 3D…

Biofunctional rapid prototyping for tissue‐engineering applications: 3D bioplotting versus 3D printing

Journal of Polymer Science Part A: Polymer Chemistry 2004 Volume 42, Issue 3, Pages 624-638

Two important rapid-prototyping technologies (3D Printing and 3D Bioplotting) were compared with respect to the computer-aided design and free-form fabrication of biodegradable polyurethane scaffolds meeting the demands of tissue-engineering applications. Aliphatic polyurethanes were based on lysine ethyl ester diisocyanate and isophorone diisocyanate. Layer-by-layer construction of the scaffolds was performed by 3D Printing, that is, bonding together starch particles followed by infiltration and partial crosslinking of starch with lysine ethyl ester diisocyanate. Alternatively, the 3D Bioplotting process permitted three-dimensional dispensing and reactive processing of oligoetherurethanes derived from isophorone diisocyanate, oligoethylene oxide, and glycerol. The scaffolds were characterized with X-ray microtomography, scanning…

Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques

Journal of Materials Science 2002 Volume 37, Issue 15, pp 3107-3116

Scaffolds are of great importance for tissue engineering because they enable the production of functional living implants out of cells obtained from cell culture. These scaffolds require individual external shape and well defined internal structure with interconnected porosity. The problem of the fabrication of prototypes from computer assisted design (CAD) data is well known in automotive industry. Rapid prototyping (RP) techniques are able to produce such parts. Some RP techniques exist for hard tissue implants. Soft tissue scaffolds need a hydrogel material. No biofunctional and cell compatible processing for hydrogels exists in the area of RP. Therefore, a new rapid…

Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering

Biomaterials 2002 Volume 23, Issue 23, Pages 4437-4447

In the year 2000 a new rapid prototyping (RP) technology was developed at the Freiburg Materials Research Center to meet the demands for desktop fabrication of scaffolds useful in tissue engineering. A key feature of this RP technology is the three-dimensional (3D) dispensing of liquids and pastes in liquid media. In contrast to conventional RP systems, mainly focused on melt processing, the 3D dispensing RP process (3D plotting) can apply a much larger variety of synthetic as well as natural materials, including aqueous solutions and pastes, to fabricate scaffolds for application in tissue engineering. For the first time, hydrogel scaffolds…

Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers

Macromolecular Materials and Engineering 2000 Volume 282, Issue 1, pages 17-21

Computer-assisted design and image processing were combined with computer-guided one- and two-component air-driven 3D dispensing of hotmelts, solutions, pastes, dispersions of polymers as well as monomers and reactive oligomers to produce solid objects with complex shapes and tailor-made internal structures. During the 3D plotting process either individual microdots or microstrands were positioned in order to construct complex objects, fibers, tubes and scaffolds similar to non-wovens. The resolution was in the range of 200 μm and depended upon inner nozzle diameter, air pressure, plotting speed, rheology, and plotting medium. Plotting in liquid media with densities similar to that of the dispensing…

Silicone